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 Legged robots have complex architecture 
because of their nonlinear dynamics and ground 
contact conditions.  

 There are different types of robot platforms that 
have different leg numbers. One example of 
these robot platforms is hexapod RHex platform. 

 One legged robots have been studied by many 
researchers because of the fact that single legged 
systems have simpler mechanical constructions 
to build and it is easy to analyze these systems 
because they can only exhibit only hopping gait.  



 Raibert and his colleaques designed a 
hopping robot that is significant step for the 
legged robotics systems 

 In this paper we used the single half circular 
legged robot. The robot has a body and a half 
circular compliant leg similar to RHex  



 We start with a single half circular legged model 
because it is simple to control and there is no 
problem with regulation of multiple legs.  

 The robot has a rigid rectangular body with a 
mass and a compliant half circular leg. 

 In dynamic equations we ignore the body 
pitching. 

 The formulation of the equation of motion for the 
robot is based on the ground reaction forces that 
are calculated using Castigliano’s Theorem. 



 The Forces and Torque Acted 
on the Robot 
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:  horizontal position of the COM

:  vertical position of the COM

:  angular position of the leg wrt. ground
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 There is a relation between angular velocity 
and forward speed of the robot, 
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 Since the leg exhibits rolling motion, the 
velocity of the ground contact point is equal 
to                  
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 And also there is a kinematic relation 
between contact point    and position of the 
hip 
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 In the flight phase, the ground reaction forces 
act on the robot are equal to zero and the 
body exhibits projectile motion. There is only 
gravitational force that acts on the body.  
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 We used Castigliano's Theorem to model the 
deflection properties of the compliant half 
circular  leg of the robot under the effect of 
external forces 



 According to Castigliano’s Theorem,  

the deflections at the point where the external 
forces are applied can be determined by the 
partial derivative of the total strain energy of 
the compliant leg with respect to that forces; 
i.e., 
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 The total strain energy of the half circular leg 
can be simplified  to 

 

 

 

   

which considers only moment of the external 
forces at the cross section,  if the radius of the 
leg is ten times larger than its thickness  
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𝐸 ∶  is the Young modulus 
𝐼 ∶  is the second moment of the  
     inertia of the leg 



 So the deflection of the loading point in the 
direction of external forces can be expressed 
as a linear function of the external forces, i.e, 
 
 
 
 
 

 Note that, the elements of the compliant 
matrix are the function of the leg angle and 
radius of the leg 
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 We define two optimal control problems for each 
phase, stance and flight 

 

 In the stance phase our aim is to maximize the 
final kinetic energy of the robot while keeping 
the leg radius near its rest length and we also try 
to find the initial conditions of the flight phase 
for a high jump. 

 

 In the flight phase we find the optimal torque 
input that brings the leg to the desired final 
position. 



 We try to obtain admissible control input that 
minimizes the performance measure 
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                 is the control input  
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 The Hamiltonian can be defined as a function 
of the state equations and performance 
measure as follows 

 

 

 

 

where      is the co-state vector. The derivative     
of the costate and state vectors are obtained by  
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 Since the control input is unconstraint we 
used the following optimality condition: 
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 As stated before, during the stance phase we 
desire to keep the height of COM around the 
undeflected leg diameter and maximize the 
final total kinetic energy (TKE) given in  
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 According to desired conditions we can 
define the performance measure of stance 
phase  
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 In the flight phase we attempt to obtain 
continuous rotation of the leg that ends with 
desired touchdown angle. The performance 
measure of the flight phase is 
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 These two problems were solved by Steepest 
Descent Algorithm. 
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Iteration Number vs. TKE and J(u) 



 

 

 

 

 

 

 

 

 

 
Initial and Optimal Torque Input  
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 We presented a controller that can be used 
for a single jump problem of monopod robot.  

 
 The robot we used in this study has a single 

actuator located at hip point and rotates the 
half circular leg. The only input to the system 
is this actuator torque.  

 
 The future work includes the extension of the 

single jump problem to the multiple jump 
problem.  



 


